THE STRESSES PRODUCED BY A SCREW DISLOCATION PILEUP
AT A CIRCULAR INCLUSION OF FINITE RIGIDITY

By

D. Barnett and A. S. Tetelman

Department of Materials Science
Stanford University

Stanford, California

August, 1966

Technical Report # 4

Prepared for the National Aeronautics and Space Administration
Under NASA Contract NSG-622

This paper will appear in the Proceedings of the Conference on Deformation

of Crystalline Solids held in Ottawa, Canada, August 22-26, 1966



1. INTRODUCTION

Dispersed second phase particles and non-metallic inclusions
exert a large influence upon the mechanical properties of materials.
In addition to increasing the yield strength by raising the stress
necessary to move dislocations through the matrix, the presence of
dispersed phases and inclusions affects the fracture behavior of these
materials by providing sites for void formation via particle or
particle-interface cracking at the tip of a blocked slip band. Under
applied stresses these voids grow and coalesce, causing fracture at
large plastic strains.

Any detailed analysis of the mechanical properties of real
materials must therefore include a study of the interactions between
slip bands (and cracks) and hard particles, since these interactions
play an important role in determining strength and ductility. To a
first approximation the slip band-perticle interaction may be repre-
sented by a planar array of dislocations which has been blocked by,
and thus piled up against, the particle (Figure 1).

Before one can investigate the interesting problems of
particle fracture, particle-interface fracture, or cross-slip of the
piled up dislocations over the barrier, one must first determine thg
stress distribution associated with such blocked arrays of dislocations
as a function of particle shape, size, and rigidity. An analytical
treatment of this problem requires, in turn, the selection of an inhomo-

geneity shape which allows a mathematical solution to be obtained and
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is at the same time a reasonable physical choice. Having chosen the
shape, the effect of the remaining variables, size and rigidity (elastic
constants), can then be examined. This examination is the subject of
the present investigation.

Previous analytical treatments of pileup problems have not
simultaneously examined second phase size and rigidity effects upon the
induced stress concentrations. A brief summary of these previous treat-
ments and their calculated local stresses is as follows (see also
Figure 1):

1. A screw or edge dislocation pileup in an infinite, homo-
geneous elastic medium (Eshelby, Frank, and Nabarro,(l)
1951). The leading dislocation was assumed to be locked in
position by a very short range delta function type force.
(2)

A similar problem was also studied by Stroh in 195h4.

These problems were analyzed without using the approximation
of continuously distributed dislocations.(S) Instead, the
dislocations in the array were treated as being discrete,
and thelir equilibrium positions were found by the trans-

formation technique of Stieltjes. Close to the pileup tip

the local stresses are of the form
L
T..~T_[= , (S >> 1)

where T 1s the applied stress, L +the pileup length, and
o0 the radial distance from the pileup tip. Thus, the local
stresses are of the same form as those predicted by continuum

fracture mechanics,




N

K =1 ~/nL,

where K 1s the stress intensity factor associated with a

crack of length L,

(4)

Head 1953, provided solutions for single edge and screw

dislocations in a bimetallic medium formed by joining two

dissimilar elastic half-planes.

(5) (%)

Chou 1965, using the single dislocation solution of Head,

considered the screw dislocation pileup against a rigid semi-
infinite second phase. This problem and the pileup problems
mentioned below were treated by the method of continuously

(8)

distributed dislocations. It was later shown that near the

pileup tip the local stresses were given by

T "'Tln?}-
X% p

2
T ~1(ln g—L-)
¥z p

(6)

Dundurs and Dundurs and Mura(7) in 1965 provided the
solutions for single edge and screw dislocations in a matrix

containing a circular inclusion.

(6)

Using the single screw solution given by Dundurs,

(8)

Barnett and Tetelman treated the screw plileup against a
rigid circular inclusion of radius R. This represents the
introduction of particle size as a free variable. Near the

pileup tip
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A screw pileup against a semi-infinite second phase of finite

shear modulus (Barnett,(9) 1966). Here the condition of

finite inclusion size was relaxed and replaced by the intro-

duction of finite rigidity.

in either the hard or soft

found to be of the form

~

T. .
1J

where is a function of

g

the respective phases with

The different expressions for local
image dislocation forces introduced

geneity. Inclusion size determines

The pileup was allowed to exist

phase and the local stresses were

g

)

2L

T(?; )

the ratio of the shear moduli of

0< g<1.

stress intensification are due to
by the presence of the inhomo-

the distribution of these image

forces, whereas inclusion rigidity determines the strength of the

virtual forces.

The present work utilizes the method of continucusly dis-

tributed dislocations to treat in closed form the screw dislocation

pileup at a second phase of circular cross section and finite modulus.
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This is the completely general case of the special cases depicted in
Figure 1 and allows a simultaneous examination of size and rigidity

effects. The size effect appears in variations of the parameter

W
N
ool Lo

+1, (1)

and the rigidity effect appears in variations of the parameter

Gy - G

k=22 (1)
+ 2
G2 Gl

where G2 and Gl are the shear moduli of the respective phases.

The methed of continuously distributed dislocations provides
a powerful analytical means of treating pileup problems in inhomo-
geneous media. Head and Louat(lo) have commented on the advantages
of using the continuocus distribution approach as compared to the dis-
crete dislocation method used by Eshelby, Frank, and Nabarro.(l)
The basic procedure used 1s the formulation of the pileup problem
from the corresponding single dislocation solution, followed by the
obtaining of the dislocation distribution function. Once the distri-
bution function is known, the stress field is found by integrating the
single dislocation stress field over the distribution of dislocationms.

(1) (10)

It is interesting to note that the discrete and the distributed
solutions for the screw and edge pileups in a homogeneous medium yield

almost identical results for the local stress field.




2. FORMULATION OF THE PROBLEM

Consider the infinite two-phase elastic medium depicted in
Figure 2. Region 2 1s a circular cylindrical inclusion of radius R
and shear modulus G2 which is imbedded in a matrix of shear modulus
Gl' The cylinder is infinitely long in the z-direction with the z-axis
coinciding with the cylinder axis. Since we shall formulate a problem
independent of 2z, we need only consider the x-y plane section in
Figure 2. The elastic stress field of a single screw dislocation

(),

located at (t,0) in the matrix is

“
G.b
1 b Y v
T = - + K -
Xz 2n ‘{ 2, .2 [ 2z 2 }" ’
(x=t)"+ y (x __B_) . y2 X+ y2
t
G2+ P > 5,
1 N 2
='_(1+K) ) 2 (X +y<R),
(x-t)"+y
> (1)
2
R
. _Glb{ x-t .k X-? x }
= 2 "2 2S¢
Yz 27 (X t)2+ 2 R2 o
= y 2 X ty
(x-F) +v
2
(£ +y° >8);
G.b
1 x~-t 2 2 2
= 5 (1) 75 (x" +y <R);
(X't) +y <
where o G
K577 (2)
2 1

b is the dislocation Burgers' vector, which is parallel to the z-axis.

Perfect interface bonding has been assumed so that Trg and the



displacement field are continuous across the circle x2 + y2 = R2.

With these boundary conditions the stress field in the matrix is
equivalent to the stress field in an infinite homogeneous medium of
shear modulus G, containing the real dislocation at (t,0) and
two virtual or image dislocations at (Re/t, 0) and the origin whose
Burgers' vectors are kb and -kb, respectively (Figure 2).

The problem of a linear array of length L containing N
right-hand screw dislocations piled up against the inclusion under the
application of an applied shear stress Tyz = - 1 (Figure 3a) may be
formulated as follows. For static equilibrium the force acting on any

one dislocation in the pileup due to all the other pileup dislocations

must balance the force due to the applied shear. This requires that

G.b N N
1 1 1 KN .
é;—-{ % Tt K Z: -—r=Tt, i=12,...,N. (3)

2
j=1 i =l - (R/x) %
JA

Equation (3) represents N simultaneous equations to be solved for the
xi's, the equilibrium positions of the pileup dislocations.

Equation (3) may be reinterpreted in terms of image disloca-
tions as follows (Figure 3b). Considering an infinite homogeneous medium,
the first sum on the left side of (3) represents the stress at xi
due to the other N-1 dislocations in the real pileup; the second sum,
the stress at X, due to a pileup of N image dislocations, each of

‘s 2 s . 2 2 2
strength Kb, at positions (R /Xj’ 0) inside the circle x~ +y =R ;
the third term, the stress at X5 due to a glant image dislocation of

Burgers' vector -«kNb at the origin.



When N 1is large we may invoke the approximation of con-
tinuously distributed dislocations--i.e., replacing the discrete dis-
locations in the array by a continuous distribution of dislocations--
and recast the equation of static equilibrium as a singular integral
equation. Defining the dimensionless parameter %i = Xi/R and using

the distributed dislocation approximation, equation (3) becomes

7\‘§ 7\ -

p B
][f(§2d§+K[ﬂ_§L_S_KN+2"RT 1<A<B, (L)
|l \l

el 1] I=7
|
>
o
o

where

p=x*t1l: (5)

A is a field point,  =a source point anywhere in the distributed
array, the first integral on the left is defined by its Cauchy principle

value, and f(g) is the unknown dislocation distribution function.

3. SOLUTION OF THE INTEGRAL EQUATION
We shall consider the case of a pileup whose distribution
function becomes infinite at the inclusion-pileup intersection. Hence,
we seek a solution to (4) such that f(¢) is unbounded (with a weak
singularity) at ¢ = 1. At the trailing end of the pileup (¢ = B)
the distribution function must vanish. It will be shown that when

Kk = -1 (i.e., the case in which the second phase is a circular hole)




the distribution function will vanish at both ends of the array.
Discussion of this special case will be deferred until later.

Knowing the form of the distribution functions obtained in
cases 3, 5, and 6 mentioned in the introduction, it is possible to
guess the solution to equation (L4). As a first trial let us guess a
solution fo(g) of the form

-1

fo(g) =A(1 + %5) sinh {é cosh™ [(gi%) (ﬁii)]:}

+ B(1 - iE) sinh wcosh-l [(%i%)(%;%)] }-. (6)

This particular form is chosen for the following reason. The distribution

functions found by Chou,(5) Barnett and Tetelman,( 8) ona mamett(?) yere or
the form
f(t) = ag cosh-l(%) (Chou: k=1, B =1) (7a)
£f(t) = b, sinh{go cosh™* %] (Barnett: g =1, -1 < k< 1) (7o)
£(8) = e (1 + 35) comn™ [EHED]
+ 4, (1 - é%) sinh.{%osh-l [(%i%)(%f%)] }- (7e)

(Barnett & Tetelman: K =1, 1 < B <w).

Thus, the forms of equations (7a) and (7b) lead one to generate the
trial function of equation (6) from equation (7c). The constants

A, B, g, and w in (6) are as yet undetermined.
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Meking the substitution u = cosh— [ B‘*‘l)(g_)]

p
f £.,(¢) at
A=

1

p

f fo(g) ag
1
1 Mo%

\

/

l.__l

gl sinh gu sinh u du

_ 2
2A B-1 ‘ji E_— cosh u +1 ] [1+[[g;% Cosh2 - l] ]

1
(A-1) cosh u + (1+p)

X B+l
6-1

+
+ 1B ( B l)EJ[ s1nh wu sinh u cosh u du
=00

cosh u + l]2 [E—Bfi cosh u + l]

1

g——l (A-1) cosh u + (1+)\)

_ S

Considering

$ I,(wA) du, (9)
C
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where C 1is the indented rectangle in the complex u = v + iQ plane
(Figure L), letting vy »® , € >0, and applying the Cauchy residue

theorem, one finds that if we let (see Appendix)

~
== sin’l X
&= 2
. = 1+
W o= sin 5 = l-g
_ -1 p-1 1S
7o =08 g 0<7,<3 # (10)
. DRy sin w(n - 70) .
= Glb
1-k sin y,
B - 2RT sin g(ﬂ - 70)
- Glb
1-k~ sin 70 J

then fO(C) satisfies the integral equation

B B
£.(¢) ag . £ (¢) df kN o
0 0 0 21R 0
f—_x-§+K.f 1 =*+Gf€'%—’ (11)
1 1 ¢
where
B
o= g,(0) at,
1 (12)

- . —2n_ B-1 - -
ay = KNy = == 5o Bl {g A cos g(n 70) wB cos w(x 70)}




If o, were identically zero, then fo(g) would be a
solution to equation (4). This is not the case, so we must find a

distribution function fl(g) satisfying

Be(t) at Br(t)at «v, o
[ S = L+ 0, (13)

Nl . 7
1 1 Z

where

B
N, = { fl(g) at .

Then f0(§) + fl(g) will be the required solution to equation (4).

A suitable guess for fl(g) is

£.(¢) = % sinh {é cosh™t [(Eﬁ%)(%?%)] }-, (14)

- - +
Again making the substitution u = cosh 1 [(g:%)(%:%)] and using the

technique illustrated in equations (8) and (9), fl(g) is a solution
to (13) if

o cos 7,

_ - - - wB si ) 1
c sin 7, cos &7, {gh sin g7, - ¥B sin W yo} (15)

Thus, in dimensionless form, the exact distribution function

is
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£(¢) = 2%

1 1
5 gin y
1-k 0

1 . .
X-{(l + §2) sin w(x - 70) sinh gn

1 .
+ (1 - EE) sin g(x - 70) sinh wm

o cos 7 5
e 7 [g-yl - K~ sin y, - sin g(ﬁ-yo) 51nvr%J

cos gy,
1 .
X % sinh gn, }-, (16)
where
 cosn™t [(E21) &
1 = coon™" [(ED§D)]
- cos™t Biloz
0< 7, = cos ) <3 (17)
g == sin_l E%E =1-w

The number of dislocations in the pileup is then given as

B+l 1

N = ntl 1
Glb 1/——-5 B cos 875
1~k

[g sin w(n—70)+w sin g(n—yo) cos 70]

(18)

The limiting cases K -1, 0 and B —» 1, o check all previous
solutions.(5’8’9’lo) One should note that the true distribution

function in dimensional form is

£(8), .o =3 f8) . (19)
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Figures 5, 6, and 7 show the true distribution function
plotted as a function of (. = pO/L (for fixed « and variable B,

and vice-versa), where is the distance from the leading edge of

o
the pileup to any point in the array. The relation between € and

QO is

£=1+(B-1) ¢, (0<t <) (20)

Figure 8 is a three-dimensional view of the surface TL/Gle as a
function of inclusion size (B) and rigidity (k). 1/N has been

plotted rather than N for two reasons:

(5,9)

(1) Previous treatments have elected to plot l/N versus K

(for B 1) because of the very linear relation obtained

when 0 < k < 1.
(2) When k< 0 and K —»-1, N becomes large. By plotting
l/N, the entire rigidity range -1 < k< 1 may be depicted

more easily.

As particle size decreases (i.e., as B becomes large), the
TL/Gle surface approaches the plane TL/Gle = l/ﬂ , independent
of the value of k. Figures 9 and 10 represent sections through the

surface at constant B and at constant k.
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4., THE PILEUP STRESS FIELD

The stress field of the piled up array 1s found by integrating
the stress field of a single dislocation (equation (1)) over the distri-

bution, i.e.,

L+R

Tij(X)Y) 2.1/; Tij(x’y’g) f(g) ag (21)

The integrals are somewhat involved, but they may be evaluated by an
(8,9)

integration in the complex plane. Expressions for special cases

of the stress fleld are presented below:

(a) The shear stress Trz along the inclusion interface:

_ _ T 2
Trz = 7 sin 70 1-x
X-{Sin w(ﬂ-yo) [(sinh gvo) cos @ + sin g(% - 70) sin 6]
+ sin g(n-yo) sin O[cosh Wy, - cos w(g - 70)]
cos ¥y
0 / 2 . . .

- o 7 Tos g7o [g 1-k sin 74 sin g(x 70) sin wyo]

X sinhgvé} ’ (20)
where

- simh T 4 (EL) cot 9—} , (21)
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and 6 is the polar angle measured from the center of the inclusion

(Figure 3a).
(b) The shear stress T, O the slip plane y = O inside the
inclusion:
When = <A = X<
B—-" R—7

T
z ~ (1-k) sin 7

T
x<(1 +-5—) sin
7\2 70

2 cos vy
N O [ 1/1-K2 sin y.- sin g(x~-y.) sin
A cos €75 sin 70 _g 70 S Y7o

X cosh gnq

- [sin w(n-yo)(l + i%) cosh gn,

: 1
+ sin g(ﬂ—70>(l - 7\2) cosh wnl] }- (22)
where
-1 ) ,B-1,, A+l
= cosn {EDH D) (23)
For -1 <A = -% < é , the same equation is valid with cosh gny and

cosh Wny replaced by cos U and cos W, respectively, where

0<n, = cos_l-{ 5+l 7\+l) }- (24)

Figure 11 shows a three dimensional view of this stress near

the pileup tip as a function of p/L = (1-A)/(p-1) (see Figure 3a)
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and inclusion size PR. Each of the three stress surfaces shown corre-
sponds to a different value of inclusion rigidity (k). Figure 12

shows a section taken through Figure 11 at constant B.

(¢) The shear stress = on the slip plane y = O outside the

inclusion (A = < -1):

Pt
R

T
T =

yz 5
V1-K sin y
0
X-{ “Vl—Kg sin 70

~

2 cos 70 ‘\/—2
X Cos 87, sin 70 [g 1-K" sin 7o T Sin 8(“'7’0) sin WO]

X 8in 80,

1 , , .
- [(l + 7\2) sin w(x 70) sin go

+ (1 - ;15) sin g(n-'yo) sin wao]} s (25)

where

12‘- . (26)

0< g, = cos"l {(E)(M)} <

p+1l [A]|+1
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5. DISCUSSION

One readily notes that the expressions for the special
stresses given in equations (20), (22), and (26) are extremely cumber -
some, and 1t is useful to have approximate expressions for the stress
field in the second phase close to the pileup tip (L/p >> 1). TFor

K # + 1 these local stresses are found to be:

T L L & 1
—%E ~ A(k,B) { B p P+ 1 oin gf

2+/B
% (27)
T g
L2~ -A(K,B){—LL'L‘} B*2 cos gp
T B+l p 2-/5
/
where
sin w(n-yo) sin wy g + w‘Vl-K2 cos y, sin 70
A(K,B) = - (28)

(1-x) sin 7o GO 87

@ is the polar angle in the second phase relative to the pileup tip,

and p is the associated radius vector (Figure 3a). As k — 1, the

(5,8,9)

stresses near the pileup tip diverge logarithmically.
Now let us examine equation (27) for cases in which the
particle diameter 2R is much greater and much less than the slip

line length L. Since

b

L __LR . L
1l »p P

“T e b’ (29)
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L L 2L L
B 5 5 when 7 << 2 (30)
and
I L 4R L
53T pss—p- when -§>>2.
Hence, when L/o >>1 and «# +1
T g
—%E ~ A(k,B) (EE) sin gf
P
L «<o (31)
T o1, & f
—%E ~ =A(K,B) (7;) cos gf

or

T g -1/2
_éi ~ A(k,B) f% {%?} sin gff = A(K’B)W/g {%?}- sin g@

g > 2 (32)
T g g-1/2
T
L -at00) f% {2 cos ap=-atm) JE LT cos g
where
> 1 Z
0<g =< sin 1—2—’5<1. (33)

One notes that
() The exponent g 1s independent of particle size and depends
only upon the ratio G2/Gl.
(b) In the case of particles which are large relative to the slip
line length, particle size affects stresses only through the
constant A(K,B). The relevant term in the expression for

local stress intensification is (2L/p)g, and this is the
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same term which would appear if the second phase were semi-
infinite. This is physically reasonable since when L/R < 2,
the second phase is extremely planar near the pileup tip and
the leading disleocations in the pileup do not sense the finite
size of the inclusion.

(¢c) In the case of particles which are small relative to the slip

line length, the relevant term in the expression for the local

g-1/2
stresses is 'N/% (&B) / . The factor ]/% is the same

P
term which appears in the calculations based upon a homogeneous
LR,8-1/2
medium (no particle present), so that the term (=)

be viewed as a correction term introduced by the finite size

and rigidity of the second phase.

We can use equations (31) and (32) to illustrate size and
rigidity effects upon the local stresses by two sample calculations
which will be compared with similar calculations assuming the absence
of the inclusion. Since the maximum shear stress acting along any
plane occurs upon the slip plane y = 0, we shall concern ourselves

with the stress Tyz =0 near the pileup tip inside the second phase.

. L .
Case 1: L ~ 10 b em, R~ 2 x 10 cm (a typical cermet)

G,
2 2
(1) =5 K=3
Gy 3
~T
T 17.5 o
—‘L:'{ 7-2} for p={lO em .
H b5 -5
(ii) « = 0 (no inclusion)

ollf

L 10

T 5 X -6

_Jz - { 1k }~ for P =-{ 10 }' cm .
T h.5 -5

10

i




Case

21.

Thus, when Kk > 0, the local stresses in large particles

may be lower than those predicted by homogeneous elasticity
bty a facter of 2 or 5 when o > 102. This is essentially

a rigidity effect, since R, the particle size, has little
effect upon the local stresses when L/R << 2. We shall

not consider kK < 0 in this calculation, because if G2 < Gl,

slip should occur inside the particle before the matrix yields.

2: L >~107° em, R<5 X107 cm.

The essential difference between the locgl stress field in the
particle and that in a homogeneous medium is given by the
correction factor (LLR/p)g—l/2 in equation (32). This correction
factor is plotted in Figure 13 for two different size particles
and two different relative rigidities. The correction factor
becomes appreciable at distances p from the pileup tip which
are less than lO&. However, it 1s doubtful that much physical
significance can be attached to this range of p values. At
distances from the pileup tip which are physically significant

(p > 25;), when Kk > O, the correction factor may vary from

about 1/2 to 1/3, so that the local stresses in the particle are
about 2 or 3 times lower than fhose predicted by homogeneous
elasticity theory. Thié may prove significant when one begins to
examine relaxation of the high local stresses by either particle
or particle interface fracture, cross slip of the blocked dis-

locations around the particle, or induced slip in the matrix.
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These effects upon the local stresses near the pileup tip may be easily
understood by using the concept of image dislocation forces. When
K > 0, decreasing the particle size effectively decreases the repulsive
image forces near the pileup tip by allowing the giant image dislocation
at the origin (Figure 3b) to partially cancel out the effect of the
image pileup. Thus, the distribution of dislocations near the pileup
tip is increased, and local stresses in the second phase are increased
as particle size decreases. When kK < O, decreasing the particle size
decreases the attractive image forces near the pileup tip, and the
same reasoning allows us to conclude that local stresses in the second
phase should decrease with decreasing particle size. These conclusions
are borne out in Figure 11. The effect of rigidity (k) is explained
in the same fashion. Local stresses in the second phase always decrease
as the second phase rigidity increases. An increase in «
(1) increases the repulsive image forces nearest the pileup
tip when k > O
(2) decreases the attractive image forces nearest the pileup

tip when «k < 0.
In both cases the net effect of an increase in rigidity is to decrease
the distribution of pileup dislocations near the second phase and hence
lower the local stress field in the inclusion.

Figures 8, 9, and 10 indicate that the effect of particle
size upon N, the number of dislocations in the pileup, is small, at
least when k > O. Neither changes in p nor k can change N by

more than 50% when Kk > O,
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When K = ~1 the second phase becomes & circular hole.
Using L'Hospital's rule in equation (16), the true distribution

functicn for the hole bhecomes

(0) - 5 igg{[g+ s B2] -0t - )

+ (t+1) cosh™t [(gi%)(%;%)] }’. (3k4)

This distribution is depicted in Figure 1L for different L/R ratios,
and one notes that for the hole the distribution function is bounded at
both ends of the array. As p -1 (i.e., R » o and the interface
becomes a free planar surface) the distribution function becomes zero.
In reality the integral equation (4) does not have an admissible
sclution in this case.(9)

The shear stress on the slip plane y = 0O outside the hole

(A = x/R< -1) is

-y o
_ A-1 o 1// pe - .1y 20
I T R R A (35)
A
where g, is as defined in equation (27). This stress is depicted
in Figure 15.

The inability to obtain a solution to equation (4) (for
K = =1) which is unbounded at § = 1 with a weak singularity is

presently unexplained. Perhaps this is due to the fact that the
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condition for pileup formation is that the leading dislocation be
locked in position by a force strong enough to keep it from penetrating
the second phase. The present and previous treatments have been able
to neglect this force in the integral equation of static equilibrium--
i.e., the locked dislocation was "smeared out" along with the trailing
dislocations in the array--and still obtain a solution. However, in
the case of a hole, the attractive image forces exerted by the free
surface are at their strongest (as compared to « % -1), and it is
possible that one must include the locking force on the leading dis-
location in equation (4) in order to obtain a solution.

The problem which has been treated in the present paper
illustrates the difficulty involved in treating stress concentrations
in inhomogeneous media, even for rather simple second phase geometries.
The only alternative treatments avallable at present seem to be

(1) The conformal mapping technigue of Webster and Johnson(ll>
and Johnson.(le)
(2) The standard boundary value problem approach of elasticity--

i,e., the partial differential equation approach.
Unfortunately, both alternatives must consider the boundary conditions
at the second phase interface which will usually be of the "dielectric"
variety--ie., continuity of the displacement field and combinations of
its derivatives across the boundary. Problems of this type do not
lend themselves easily to solution by conformal mapping, and it is
possible that either alternative approach will require solution of an

integral equation or possibly dual integral equations.
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The beauty of the continuously distributed approach is that
the boundary conditions for the distributed array will be satisfied
automatically provided the solution for a single dislocation satisfying
boundary conditions is known. In the case of screw dislocations in
inhomogeneous media the close analogy with two-dimensional electro-
static charges in media of differing dielectric constants may often
allow the single dislocation solution to be found rather easily.

Three limitations of the approach are:

(1) Plastic relaxation by slip in the matrix or in the second
phase has not been allowed during pileup formation. Stress
relaxation can, however, be considered once the pileup has
formed and the local stresses are known.

(2) The case of a broadened slip band containing more than one
linear array cannot be treated exactly, except for the case
of an infinite sequence of screw arrays stacked on parallel
slip planes and piled up against a semi-infinite second phase
of finite rigidity.(l3)

(3) At present problems involving edge dislocation pileups cannot

(4,7)

be treated because the single edge solutions, even for
simple second phase geometries, are too complex in the elastic
constants. Because the strain field of the edge has an
associated dilatation, Poisson's ratio effects are encountered,
and imege edge dipoles and quadrupoles are needed to satisfy

boundary conditions. The pileup equilibrium condition in

this case becomes a singular integro-differential equation
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which has not been solved. A preliminary investigation(lS)
indicates that the distribution function obtained for the

screw pileup at a semi~-infinite second phase(9) may suffice
for the corresponding edge array problem for certain values

of the respective elastic constants of the two phases.

It is also worth noting that although the present work and the previously
mentioned treatmerts have examined plleups blocked at the inclusion, the
same techniques should prove successful in treating the case in which a
linear dislocation array approaches a second phase but is separated

from the inhomogeneity by a finite distance.
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(INCLUSION)
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FIGURE 2: Schematic Tllustration of Co-Ordinate System and the
Equivalent Image Dislocation Arrangement Used to Describe
the Stress Field ¢f a Screw Dislocation Near a Circular

Inclusion.
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(a) Schematic Tllustration of a Screw Dislocation Pileup

FIGURE 3:
(b) Schemstic TIllustration

Against a Circular Inclusion.
Showing Equivalent Tmage Dislocation System Used to Describe

the Stress Field of the Pileup.



|
:
N

o [B2L

COSH " |g+1 x-I
S| B=1 A+
B+l -l

- COSH

FIGURE 4: The Contour C in the complex u = v + i Plane Used to
Solve the Integral Equation for the Dislocation Distribution

Function.




FIGURE 5:

0.5 o %5,=//

f(Co), The Dislocation Distribution Function, vs. CO = pO/L
for a Fixed Relative Rigidity (k) and Various L/R Ratios.
The Pileup is in the Softer Phase (G2 > Gl)' po is the
Distance from the Leading Edge to the Pileup to any Point
in the Array.
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FIGURE 6: f(ﬁo), The Dislocation Distribution Function, vs. CO = pO/L
for a Fixed Relstive Rigidity (k) and Various L/R Ratios.
The Pileup is in the Harder Phase (G2 < Gl).
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FIGURE T: f(go), The Dislocation Distribution Function, vs. CO for

a Fixed L/R Ratio and Various Values of Relative Rigidity
(k).
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FIGURE 9: TL/Gle as a Function of Relative Rigidity (k) for Various
L/R Ratios.
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FIGURE 10: TL/Gle as a Function of B for Various Values of Relative
Rigidity (k).




FIGURE 11:

Three Dimensional Surfaces Showing the Shear Stress Tyz on
the Slip Plane y = O Inside the Inclusion Close to the
Pileup Tip as a Function of B and p/L. p is the Distance
Measured from the Pileup Tip. ZEXach Surface Represents a
Different Value of Relative Rigidity (k).
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FIGURE 13: The Correction Factor For the Local Stresses in the Second
Phase as a Function of p for Two Different Size Particles
and Two Different Relative Rigidities.
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FIGURE 1k: f(go), The Distribution Function for the Hole vs. CO’ for
Various Values of L/R.
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APPENDIX

Consider #aIl(u,K) du, where Il(u,k) is defined by equation (8)
C

in the text, and C 1is the indented rectangle in the complex u = v+if
plane (Figure 4). If we let Vo 2 ®, € =0, apply the Cauchy residue

theorem, and choose

K = coB gr = - COS WX , (A1)
then
[+ ] 0

§>Il(u,%) du =+ Il(u,k) du + K fm Ie(u,%) du (A2)

-0 -

= 2ni ), (residues of I,(u,\) at the poles
i (83)

contained inside C) ,

where Ig(u,K) is defined by equation (8) in the text. Evaluating

the residues of the integrand, equations (A2) and (A3) are equivalent to

|f £, () at +Kff&0dg

R I
1 1 M
A sin g(u-yo) - B sin w(n-yo)
='{K[A sin gy, + B sin wyo] + 5 7
L A
2n cot 7o
+ ——-7\—- [gA cos g(:\:-yo) - wB cos w(ﬂ-'yo)] } y (A)-l-)

where




1

ki

oA

0 _<_ 70 = cos < 9 (A5)

l_-!

B+

and fO(Q) is defined by equation (6) in the text.
By comparing equation (AhL) with equation (4) in the text, we then

require

Asing70+Bsinw70=?2}-R—g
. (46)

A sin g(ﬂ-yo) - B sin W(ﬂ-yo) =0,

so that A and B are given by equation (10) in the text.

Thus, fo(g) is a solution to

R (e)ar R (L) ag kN
0 0 0, 2mRkr %
frr o ST o
1 1 d
where
B
No={ £,(8) at
2x cot 70
e {éA[cos g(n-yo) + cos gyo] + wB[cos Wy, - cos w(ﬂ-yo)]}-,
(A8)
and
KNO
Q) = == - 2n cot 7 [gh cos gln-y,) - wB cos w(n-y )1 . (n9)



Since # 0, the total distribution function must be given by

fo(ﬁ) + fl('@), where fl( t) is a solution to
22 (t) at Pr(c)ar kN o
f—"“g—‘)\- +Kf T =ty (A10)
1 1 Tt
where

Choosing fl(C) to be given by equation (14) in the text and using the
technique described above, the exact solution f(§) = fo(g) + f‘l(g),
is found to be given by equation (16) in the text. One should note

that equation (Al) is equivalent to

almn
\

—

—
1

X

sin - =1l-w. (A1)



